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Weighting Affected Sib Pairs by Marker Informativity
Daniel Franke and Andreas Ziegler
Institute of Medical Biometry and Statistics, University at Lübeck, Lübeck, Germany

For the analysis of affected sib pairs (ASPs), a variety of test statistics is applied in genomewide scans with micro-
satellite markers. Even in multipoint analyses, these statistics might not fully exploit the power of a given sample,
because they do not account for incomplete informativity of an ASP. For meta-analyses of linkage and association
studies, it has been shown recently that weighting by informativity increases statistical power. With this idea in
mind, the first aim of this article was to introduce a new class of tests for ASPs that are based on the mean test.
To take into account how much informativity an ASP contributes, we weighted families inversely proportional to
their marker informativity. The weighting scheme is obtained by use of the de Finetti representation of the distri-
bution of identity-by-descent values. We derive the limiting distribution of the weighted mean test and demonstrate
the validity of the proposed test. We show that it can be much more powerful than the classical mean test in the
case of low marker informativity. In the second part of the article, we propose a Monte Carlo simulation approach
for evaluating significance among ASPs. We demonstrate the validity of the simulation approach for both the
classical and the weighted mean test. Finally, we illustrate the use of the weighted mean test by reanalyzing two
published data sets. In both applications, the maximum LOD score of the weighted mean test is 0.6 higher than
that of the classical mean test.

Introduction

A standard approach to mapping complex genetic dis-
eases is the ascertainment of several affected sib pairs
(ASPs). A variety of test statistics has been proposed for
this study design, and most of the test are based on the
identity-by-descent (IBD) value of an ASP. For some ge-
netic markers, the IBD value can be determined uniquely
for a given family. However, other markers may not be
completely informative, so that the IBD distribution is
ambiguous and has to be estimated from the observed
marker data. Still, the ASP statistics can be applied by
use of this estimated IBD distribution. One example of
this application is the mean test statistic, which is often
employed because of its elegance, simplicity, and opti-
mality (Knapp et al. 1994; Whittemore and Tu 1998).
The question of whether incomplete marker informativ-
ity affects the power of the utilized statistic remains.

The following example illustrates that incomplete in-
formativity may lead to a decrease in the LOD score.
Consider a small sample of 20 ASPs, all with an IBD
value of 2. The mean test statistic gives a LOD score
of 8.69. However, if the total sample comprises an ad-
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ditional 20 noninformative ASPs, the mean test LOD
score drops to 4.34. Thus, the 20 noninformative ASPs
do not increase the available information but, instead,
lead to an extreme power loss. In most software pack-
ages, those completely noninformative ASPs would have
been omitted from the analysis. If they are only slightly
informative, sib pairs remain in the statistical calcula-
tion, although this does not alter the substantial LOD
score drop.

The reason for this rather obscure observation is sim-
ple: all sib pairs receive the same weight in the linkage
analysis, although their information content varies sub-
stantially. This defies basic statistical ideas summarized
under the term “Horvitz-Thompson estimation” (Horv-
itz and Thompson 1952). On the basis of those ideas,
observations should be weighted according to their in-
formativity: the greater the degree of informativity, the
greater the weight of an observation.

Weighting by informativity has already been pro-
posed in the context of linkage studies for quantitative
traits. For example, Amos et al. (1989) extended the
classic Haseman-Elston method (Haseman and Elston
1972) by introducing a generalized least-squares ap-
proach in which the squared phenotypic difference of
a sib pair is weighted proportional to its Fisher infor-
mation. Sham and Purcell (2001) also weighted sib pairs
by phenotypes. They linearly combined squared differ-
ences and squared sums, and the weights were deter-
mined by the overall trait correlation between the sibs
in a population. Both statistics may lead to a substantial
gain in power.



Franke and Ziegler: Weighting ASPs by Marker Informativity 231

Figure 1 Three ASP families with varying degrees of informa-
tivity. Sib pair (a) shares 1 allele IBD; sib pair (b) shares either 0 or
2 alleles IBD, with equal probabilities; and sib pair (c) is completely
uninformative for linkage. For all three sib pairs, the proportion of
alleles shared IBD is 0.5.

Unlike in studies that use quantitative phenotypes, in
ASP studies, sib pairs cannot be weighted according to
their phenotypic informativity, because both sibs are
affected. An alternative method might be to increase
power by weighting families according to marker in-
formativity, which has already been proposed for quan-
titative traits. The recent regression method introduced
by Sham et al. (2002) takes into account ambiguous
IBD sharing by an appropriate specification of the var-
iance-covariance matrix of IBD sharing between pairs
of relatives. Sham et al. (2002) have derived the limiting
distribution of the proposed test statistic and have val-
idated their results by Monte Carlo simulations. Jacobs
et al. (2003) weighted individual sib pair families for
Haseman-Elston linkage analyses according to marker
informativity, as measured by the difference between
the allele sharing at the marker and the allele sharing
at a noninformative marker. We have recently demon-
strated, however, that this results in increased type I
error fractions (Franke et al., in press). This led us to
the conclusion that Haseman-Elston analysis with mar-
ker informativity weights should be used only in con-
junction with empirical P values until the valid limiting
distribution has been derived.

Weighting by informativity has been proven to be
successful in the context of meta-analyses in which stud-
ies, not individual families, have been weighted (Loes-
gen et al. 2001; Dempfle and Loesgen 2004). The effect
estimates from the single studies in the meta-analytic
approach approximately follow a normal distribution
by the central limit theorem, so the limiting distribution
of the combined estimator can be derived easily.

In this contribution, we introduce a novel weighted
mean test statistic that weights individual sib pairs ac-
cording to marker informativity. Weights are based on
the Euclidian distance between the IBD distribution
of the marker under study and the IBD distribution of
a noninformative marker. We derive the limiting distri-
bution of the novel test statistic. We discuss the appli-
cability of existing Monte Carlo permutation or sim-
ulation approaches, argue that previously published
methods cannot be applied to the weighted test statistic,
and introduce a novel method for simulating P values
in ASP studies. We validate our new test statistic and
the proposed simulation method in a Monte Carlo sim-
ulation study. Finally, we illustrate the application of
the novel weighted mean test by reanalyzing two pub-
lished data sets.

The Classical Mean Test

For the classical mean test, consider a sample of n in-
dependent ASPs, and let and denote the estimatedˆ ˆf f1i 2i

probability that sib pair i shares 1 or 2 alleles IBD, re-
spectively. Further, let be the observedˆ ˆt̂ p f � f /2i 2i 1i

proportion of alleles shared IBD for sib pair i. Under
the null hypothesis of no linkage between the marker
and trait loci, the expected mean proportion of alleles
shared IBD by an ASP is 1/2. In other words, if we let

n1
ˆ ˆt p t� in ip1

be the observed mean proportion of alleles shared IBD,
then under the null hypothesis. The meanˆE(t) p 1/2
test statistic is given by

1
t̂ �

2
T pm

ˆ� ˆVar t( )

(see, e.g., Olson 2002), where the denominator may be
replaced by under the null hypothesis of no link-�1/(8n)
age. In this case, asymptotically follows a standardTm

normal distribution, and its mean is 10 for ASPs under
linkage.

Greater power of the mean test statistic and a bet-
ter approximation to the normal distribution can be
achieved by replacing the denominator with an empir-
ical variance estimate. For example, in the software
package S.A.G.E. (2004, p. 221, eq. [10.1]), isˆ ˆVar (t)
replaced by , and we denote

2n ˆ ˆ[� t �t ] / [n(n � 1)]( )iip1

the resulting test statistic by .Tmev

Figure 1 illustrates the fundamental shortcoming
that underlies the standard mean test for ASPs. It dis-
plays marker data of a notional locus for three nuclear
ASP families. The IBD value of ASP (a) can be uniquely
determined, whereas uncertainty remains for the other
two pedigrees, (b) and (c). Although these families have
markedly different degrees of informativity for linkage
analysis, they share the same proportion of alleles IBD—
namely, . They thus contribute equally to ,t̂ p 1/2 Ti m
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Figure 2 Euclidian distances in the space of IBD distributions. The curved plane shows the relation between the informativity of a specific
IBD distribution and the weight assigned to this distribution. Weights increase with increasing distance from (1/4,1/2,1/4), which is the center
of the displayed circles. The triangle below the plane is an orthogonal projection of the contours of the plane above.

since is an unweighted mean. Our alternative sugges-t̂

tion is to take marker informativity of a sib pair into
account, and a measure for marker informativity is de-
lineated in the next section.

Simplex Weighting Scheme

Let us begin by considering the space of IBD distribu-
tions that can be represented by an equilateral triangle
of height 1, termed the “de Finetti triangle” (Franke et
al., in press). If an ASP is completely noninformative at
a genetic marker, its IBD distribution is .(1/4, 1/2, 1/4)
A natural approach to measure distance is Euclidian dis-
tance, and we (Franke et al., in press) have shown that
the Euclidian distance between an uninformative marker
and the actual IBD distribution is given byf p (f , f , f )0 1 2

1 12 2�( )d f p (f � f ) � (1 � 2f ) . (1)2 0 13 4

Therefore, for a sib pair that is completely non-d p 0
informative at a marker locus. In contrast, d equals

for sib pairs sharing 2 or 0 alleles IBD and equals�7/12
for sib pairs sharing 1 allele IBD. These different1/2

distances for sib pairs sharing 2 or 0 alleles versus 1

allele IBD naturally reflect the variability in informativity
of sib pairs sharing 1 allele IBD, depending on the un-
derlying genetic model. Thus, one expects a sharing of
2 alleles IBD under a recessive model of inheritance,
whereas 1 or 2 alleles shared IBD are reasonably ex-
pected for a simple dominant genetic model.

By use of equation (1), Euclidian distance weights
are defined as the normalized Euclidian distancewi

between the noninformative marker situation and the
estimated IBD sharing information for ASP i, with

such that . Figure 2 il-n nw p d(f ) � d(f ) � w p 1[ ]Zi i j ijp1 ip1

lustrates the Euclidian distances in both a three-dimen-
sional representation of , plotted over the triangulardi

space of IBD distributions, and a two-dimensional rep-
resentation. Points with identical colors have identical
weights.

The Weighted Mean Test

As a test for linkage, we propose to replace the original
unweighted mean from the classical mean test with the
weighted mean

n

ˆ ˆt p wt ,�w i i
ip1
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Figure 3 Space of IBD distributions and resampling restrictions. The figure visualizes the regions defined in table 1. The red area is
obtained by a circular expansion from the point of noninformativity—that is, (1/4,1/2,1/4). The intersection of the circle with the side of the
triangle is obtained by an orthogonal projection along the side of the triangle. The yellow circle segments are bounded by the triangle parallel
to the X-axis. The green area is obtained by an expansion of the circle segments to the bottom line of the triangle. The blue area represents
the remaining part of the triangle and is limited by the corners of the triangle.

where are the Euclidian distance weights. has var-ˆw ti w

iance , so that a weighted mean test sta-
2n 2 ˆ� w t �t( )i i wip1

tistic is given by

1
t̂ �w 2

T p , (2)w
′ nn 22� ˆ ˆ( )� w t �ti i w′

ip1n � 1

since its mean is 1/2 under the null hypothesis of no
linkage for both ASPs. Here, denotes the number of′n
ASPs that are not completely uninformative—that is, for
which . The weighted mean test statistic reducesw 1 0i

to the classical mean test with the empirical variance
estimate if for all i and .′w p 1/n n p ni

In equation (2), we treat the weights as fixed, al-
though they are estimated from the present sample.
Therefore, the asymptotic properties are not obvious at
first glance. However, can also be derived from aTw

generalized estimating equations (GEE) model with in-
dependence working covariance matrix (Ziegler et al.
1998). For this purpose, we assume that we can addi-
tively decompose into for all n independent sibt t � �i i

pairs. Furthermore, , and . If a gen-E(t ) p t Var (t ) p wi i i

eralized least squares estimator is used with weight ma-
trix for estimating t, then the Wald statistic ofdiag(w )i
equation (2) is obtained if the robust estimator of var-
iance (Ziegler et al. 1998) is employed for this model.

Therefore, asymptotically follows a standard normalTw

distribution under the null hypothesis of no linkage. To
avoid slightly increased type I error, especially for small
sample sizes, we recommend the use of the central t
distribution, with df, in applications.n � 1

Monte Carlo Simulation of P Values

At the beginning of this project, it was not certain
whether we would discover the limiting distribution of
our novel weighted mean test statistic, because weights
are estimated from the current sample, thus introducing
an extra random element. We therefore investigated the
applicability of existing Monte Carlo permutation or
simulation approaches, which can be grouped into three
basic procedures, as follows.

1. For linkage analysis of quantitative traits in sib pairs
and for case-control association studies, one may
permute phenotypes or genotypes to disperse the
dependency of genotypes and phenotypes (Wan et
al. 1997; Zhao et al. 2000). In ASP studies, how-
ever, all sib pairs have identical phenotypic values,
and this approach is not applicable.

2. One may generate new marker genotypes under the
null hypothesis of no linkage with a prespecified
heterozygosity (see, e.g., Zinn-Justin et al. 2001).
This, in turn, alters the weights, and thus the degree
of informativity is not adequately reflected.
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Table 1

Mapping Rules

Case Distance d Range of t

1 1
0 � d �

4
0 � t ! 2p

2 1 1
! d ! �4 2 3

�1/20 ! t � 2 arctan 3 � a � A( )
�1/2 �1/22 arctan 3 � a � A � t � 2 arctan �3 � b � B( ) ( )

�1/2�2 arctan 3 � b � B � t ! p( )
p � t � 2p

3 1
d p �2 3

p 2p
� t �

3 3
p � t � 2p

4 1 1
! d ��2 3 2

�1/2 �1/22 arctan 3 � a � A � t � 2 arctan �3 � b � B( ) ( )
�1/2 �1/22p � 2 arctan 3 � b � B � t � 2p � 2 arctan �3 � a � A( ) ( )

5
1 7�! d �
2 12

�1/2 2�2p � 2 arctan 3 � b � B � t � 2p � 2 arctan 2r � 4r � 1( ) ( )
2 �1/2�2p � 2 arctan 2r � 4r � 1 � t � 2p � 2 arctan �3 � a � A( ) ( )

NOTE.—Valid IBD distributions are calculated in terms of polar coordinates with(d,t)
origin in . These rules specify, for any d, the valid angles t (in(f ,f ,f ) p (1/4,1/2,1/4)0 1 2

radians), so that the pair maps back to a valid IBD sharing value. Except for the first(d,t)
area, which describes a whole circle, distances d correspond to the union of different circle
segments. In addition, , , , and

�1 �1
2 2� � �a p 3�6d A p b p 3�6d B p( ) ( )a 3(16d � 1)

.2 2�b 3(16d � 1)

3. Zhao et al. (1999) proposed a randomization pro-
cedure for the inheritance vectors obtained from
the Lander-Green algorithm (Idury and Elston
1997; Kruglyak and Lander 1998). Again, this ap-
proach does not hold the weights constant andwi

therefore does not adequately reflect the informa-
tivity of the individual sib pairs.

To conclude, all existing approaches do not keep
the weight constant for an individual sib pair. They
are therefore not suitable for the proposed weighted
mean test, and we suggest instead the use of the fol-
lowing approach. If we consider lines tracking the cir-
cles around the IBD distribution of an uninformative
marker, we see that these represent ASPs with identical
informativity and, thus, equal weights. Although the
weights are constant, their specific IBD distribution may
vary, as shown by a specific position on the circle. For
a given weight , we therefore simulate new ASPs onwi

the line describing the circle belonging to weight , aswi

shown in figure 3.
With increasing weights, circles around (1/4, 1/2,

1/4) do not completely fit into the triangle of IBD dis-
tributions in figure 3. In this situation, one could first
simulate a point on the corresponding circle, as before,
and, second, check whether the point corresponds to a
valid IBD distribution by lying within the triangle. This
may, however, be quite inefficient. For example, in the
most extreme case (i.e., a sib pair with either 2 or 0
alleles shared IBD), the circle intersects the triangle at
only those two points. Consequently, the probability
that a point on the circle exactly corresponds to one of
the two possible IBD distributions is 0. For this reason,

we mathematically derived the circles and circle seg-
ments, given a specific weight. Four areas have to be
distinguished, as shown in figure 3. The first area is the
red circle, which is obtained by moving from (1/4, 1/2,
1/4) in all directions toward the sides of the triangle.
The first intersection is obtained orthogonal to andf0

. The second area, marked in yellow, is bounded byf2

the intersection orthogonal to the Y-axis. The third area,
displayed in green, is limited by the intersection or-
thogonal to the X-axis. The remaining area is shown in
blue.

Areas according to Euclidian distances and corre-
sponding valid IBD distributions are calculated using
polar coordinates . These specify the valid angles t(d,t)
(in radians) for any distance d (table 1). With the angles
t, given the distance d, the following simulation algo-
rithm for ASPs may be employed.

1. Compute the weighted mean test statistic , usingTw

the original n sib pairs. Keep the Euclidian distances
and weights .d wi i

2. For sib pairs i, from 1 to n,
a. Draw from a continuous uniform distributionti

in accordance with table 1.
b. Calculate the simulated IBD sharing values

1 di �f p � 3 cos (t ) � sin (t ) ,[ ]0i i i4 2

1
f p � d sin (t ), and1i i i2

f p 1 � f � f .2i 0i 1i
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Table 2

Possible IBD Distributions and Their Probabilities at a Marker Locus with r Equifrequent Alleles(f ,f ,f )0 1 2

IBD
DISTRIBUTION

PROBABILITY

No Linkagea Dominant Modelb Recessive Modelb

(1,0,0) 3 2r � r � 1
34r

r � 1 2 4 2 3[(3r � 3r � 4)p � (4r � 4r � 6)p
38r

2 2�(3r � 3r � 4)p ]

1 3 2 4(r � 2r � 1)p
34r

(0,1,0) r � 1
22r

2(r � 1) 4 3 25p � 5p � 3p � p( )28r

2(r � 1) 4 3(3p � p )
28r

(0,0,1) 3 2r � r � 1
34r

1 3 2 4 3 2 3[(5r � 10r � r � 6)p � (4r � 8r � 2r � 6)p
316r

3 2 2 3 2�(r � 2r � r � 2)p � (2r � 4r � 2)p]

r � 1 2 4 3 2 2[(3r � 3r � 2)p � p � (r � r)p ]
316r

1 1
, ,0( )

2 2
r � 1

2r
r � 1 4 3 2(5p � 5p � 3p � p)

24r
r � 1 4p

2r1 1
,0,( )

2 2
r � 1

32r
r � 1 4 3 2(7p � 9p � 5p � p)

38r
r � 1 4 3(3p � p )

38r1 1
0, ,( )

2 2
r � 1

2r
r � 1 4 3 2(11p � 12p � 7p � 2p)

28r
r � 1 4 3 2(5p � p � p )

28r1 1 1
, ,( )

2 4 2
1
2r

1 4 3 2(21p � 22p � 13p � 4p)
216r

1 4 3 2(13p � 2p � p )
216r

a Displays the probability of an ASP for a specific IBD distribution at an unlinked autosomal genetic marker—that is, .v p 0.5
b The probability of an ASP for a specific IBD distribution at a linked genetic marker with for an autosomal dominantv p 0

disease (dominant model) or a recessive disease (recessive model) with complete penetrance and a diallelic trait locus with minor-
allele frequency p. Both loci are in Hardy-Weinberg equilibrium, and there is no linkage disequilibrium between the loci.

3. Compute the simulated test statistic, , of theTsim

resampled pairs, using weights .wi

4. Repeat steps 2 and 3, say, M times.
5. Compute the empirical P value, , byP #{T �emp sim

. Here, # denotes the number operator.T }/Mw

To explain step 2a of the algorithm in greater detail,
we consider the following example. If the estimated
IBD distribution is , then one obtainsf p (1/2, 1/4, 1/4)

, corresponding to case 4 in table 1. This�d p 13/12
distance d falls within the interval . With�[1/(2 3); 1/2]

,� � � �a p 1/( 3 � 13/2) ≈ 0.282899 b p 1/( 3 � 13/2) ≈
�14.1393, 0.326664, and�A p (4/3) (�6 � 39) ≈

, t is drawn from a con-�B p (4/3) (6 � 39) ≈ 16.3267
tinuous uniform distribution, with values that fall within
the interval

� �4 � 13 �4 � 13
2 arctan ; �2 arctan( ) ( )[ ]� �6 � 39 �6 � 39

� �4 � 13 �4 � 13
∪ 2p arctan ; 2p arctan( ) ( )[ ]� �6 � 39 6 � 39

≈ [1.1116; 2.0300] ∪ [3.2060; 6.2188] .

Simulation Studies

In this section, we demonstrate the validity of the pro-
posed weighted mean test and the Monte Carlo simu-
lation approach. Furthermore, we show the gain in

power that can be achieved by the weighted mean test,
in comparison with the classical mean test.

In the simulation study, we wanted to avoid com-
puter time–consuming simulation of parental alleles,
segregation of alleles to offspring, disease assignment,
and subsequent calculation of IBD values in a two-point
setting. We therefore derived the probabilities for the
seven possible IBD distributions for ASPs at an unlinked
marker locus with r equifrequent alleles (table 2). A
similar distribution has been presented by Risch (1990)
for identity-by-state values. We also deduced the prob-
abilities of the seven possible IBD distributions for ASPs,
assuming an autosomal dominant and recessive disease
with complete penetrance, no phenocopies, a diallelic
trait locus with minor-allele frequency p, , and av p 0
marker locus with r equifrequent alleles. Both loci are
assumed to be in Hardy-Weinberg equilibrium, and
there is no linkage disequilibrium between the loci.

Parameters subject to variation were the probability
of the disease allele ( ), the number ofp p 1/100,000
families ( and ), and the number ofn p 50 n p 200
equally frequent alleles at the marker locus (r). The sce-
nario corresponds to a heterozygosity of 0.5,r p 2
which is comparable to the usual two-point situation.
The scenario (i.e., heterozygosity of 0.75) is sim-r p 4
ilar to the informativity in a microsatellite genome
scan, and corresponds to an almost complete-r p 100
ly informative chromosomal position, which can be
achieved in genomewide scans with SNP chips.

The number of replications was set to 100,000 under
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Table 3

Asymptotic and Empirical Type I Error Fractions for the Classical Mean Test with Empirical Variance (Classic) and the Weighted Mean
Test with Euclidian Distance Weights (Euclid)

NOMINAL a

TYPE I ERROR

n p 50; r p 2 n p 50; r p 4 n p 50; r p 100 n p 200; r p 2 n p 200; r p 4 n p 200; r p 100

Classic Euclid Classic Euclid Classic Euclid Classic Euclid Classic Euclid Classic Euclid

Asymptotic:
.001 .00113 .00146 .00098 .00195 .00098 .00183 .00091 .00132 .00077 .00089 .00097 .00104
.01 .00986 .01377 .01025 .01357 .00965 .01195 .00952 .01024 .00960 .01011 .01010 .01023
.02 .02049 .02598 .01972 .02398 .02115 .02197 .01973 .02049 .01940 .01952 .02040 .02026
.03 .03058 .03764 .02999 .03406 .03127 .03204 .02967 .03062 .02918 .02977 .03092 .03024
.04 .04085 .04869 .04033 .04426 .04013 .04251 .03991 .04117 .03908 .03974 .04084 .04008
.05 .05034 .05989 .04907 .05462 .04979 .05315 .05019 .05141 .04908 .05002 .05109 .05062

Empirical:
.001 .00117 .00051 .00083 .00078 .00099 .00130 .00121 .00096 .00100 .00072 .00092 .00097
.01 .01071 .00819 .01026 .01000 .00957 .01042 .01060 .00892 .01009 .00955 .01032 .01011
.02 .02025 .01756 .01982 .01991 .01995 .02044 .02119 .01853 .02033 .01891 .02061 .02027
.03 .03037 .02808 .02953 .02978 .02971 .03033 .03133 .02845 .03021 .02880 .03094 .02999
.04 .04040 .03812 .03992 .03970 .04007 .04029 .04149 .03879 .04006 .03910 .04128 .03956
.05 .05029 .04855 .04918 .05000 .05002 .05075 .05167 .04929 .05058 .04907 .05153 .05010

NOTE.—Error values were calculated for n ASPs and r equifrequent alleles. Asymptotic type I errors are obtained from the t distribution
with df. Empirical type I error fractions are estimated from the novel Monte Carlo simulation approach.n � 1

the null hypothesis, , for the unlinked marker and toH0

1,000 for a completely linked marker locus. Asymp-
totic P values were obtained from the t distribution,
with df, for the standard mean tests and then � 1
weighted mean test. The number of simulations was set
to for the computation of empirical P val-M p 10,000
ues for both and . For the empirical determi-T Tmev w

nation of P values, data were simulated on circles or
circle segments. Distances, however, were ignored in the
computation of by setting weights to . Power atT 1/nmev

type I error level a was determined by using the upper
a fractile from both the asymptotic and the empirical
distribution of P values simulated under the null hy-
pothesis of no linkage. All Monte Carlo simulations
were performed by a fast and flexible simulation utility
in C��, which is available upon request.

Simulation results for type I error fractions and power
for the dominant genetic model are summarized in ta-
bles 3 and 4, respectively. As displayed in figure 4, as-
ymptotic type I error levels based on the t distribution
agree well with the nominal levels, if the sample size is
at least , and the approximation improves withn p 100
sample size, regardless of the underlying marker infor-
mativity. Asymptotic normality begins to take effect
later for the novel weighted mean test (dashed line in
fig. 4) than for the classical mean test with empirically
estimated variance (solid line in fig. 4) because of the
extra random element introduced by the weight .wi

However, differences are negligible when the sample size
exceeds 150 (fig. 4). No such pattern can be observed
for empirically determined type I errors. Here, the nom-
inal level coincides well with the simulated level for both

mean tests, regardless of the sample size and marker
informativity (table 3), except for and ,n p 50 r p 2
for which the weighted mean test appeared to be slightly
conservative.

Because the weighted mean test with the use of the
asymptotic distribution is liberal for , power forn p 50
this test is presented only for a sample size of n p

(table 4). As expected, power increases with the200
number of ASPs and the number of alleles at the linked
marker locus. Power varies only slightly between as-
ymptotically and empirically determined type I error
levels. There is, however, a remarkable gain in power
between the classical mean test with empirically esti-
mated variances and the weighted mean test, for many
configurations. For instance, for a significance level of
0.001, with ASPs and a low heterozygosity ofn p 200
50%, corresponding to , the power increases fromr p 2
28% to 70%. Furthermore, there is no configuration in
our simulations for which the classical mean test has
greater power than the weighted mean test.

Application to Sample Data

As a first example, we reanalyzed the ASP sample data
given by Risch (1990, table 1), which are displayed in
table 5. Only 32 of the 74 ASPs have definite informa-
tion about IBD. The mean test statistic , with vari-Tm

ance fixed to , gives a LOD score of 1.95 (table 6)1/(8n)
when statistics are converted to LOD scores viaTm

. As expected, the mean test statistic with2T /(2 ln 10)m

empirical variance has a higher LOD score of 2.63.Tmev

The weighted mean test statistic outperforms both mean



Franke and Ziegler: Weighting ASPs by Marker Informativity 237

Table 4

Asymptotic and Empirical Power of the Classical Mean Test with Empirical Variance (Classic) and the Weighted Mean Test with Euclidian
Distance Weights (Euclid)

NOMINAL a

POWER

n p 50; r p 2 n p 50; r p 4 n p 50; r p 100 n p 200; r p 2 n p 200; r p 4 n p 200; r p 100

Classic Euclid Classic Euclid Classic Euclid Classic Euclid Classic Euclid Classic Euclid

Asymptotic:
.001 .01734 … .78372 … 1.00000 … .27522 .69777 .99991 1.00000 1.00000 1.00000
.01 .06973 … .86694 … 1.00000 … .39528 .88785 .99999 1.00000 1.00000 1.00000
.02 .13617 … .91924 … 1.00000 … .53396 .93070 .99999 1.00000 1.00000 1.00000
.03 .17692 … .93668 … 1.00000 … .59950 .94601 .99999 1.00000 1.00000 1.00000
.04 .20631 … .95779 … 1.00000 … .62774 .95875 .99999 1.00000 1.00000 1.00000
.05 .24086 … .96311 … 1.00000 … .65765 .96887 .99999 1.00000 1.00000 1.00000

Empirical:
.001 .02291 .05394 .78853 .90693 .99901 .99870 .28467 .69713 .99900 1.00000 1.00000 1.00000
.01 .07334 .23344 .86252 .98124 1.00000 1.00000 .39984 .88308 1.00000 1.00000 1.00000 1.00000
.02 .14210 .34297 .91689 .98798 1.00000 1.00000 .54142 .92321 1.00000 1.00000 1.00000 1.00000
.03 .18063 .41545 .93584 .99095 1.00000 1.00000 .60576 .94377 1.00000 1.00000 1.00000 1.00000
.04 .21263 .49261 .95330 .99401 1.00000 1.00000 .63758 .95470 1.00000 1.00000 1.00000 1.00000
.05 .24729 .56199 .96008 .99606 1.00000 1.00000 .65720 .96530 1.00000 1.00000 1.00000 1.00000

NOTE.—Power was calculated for n ASPs under an autosomal dominant genetic model with complete penetrance, no phenocopies, and
in a two-locus setting. The linked marker was assumed to have , , and equally frequent alleles. Empirical P valuesv p 0 r p 2 r p 4 r p 100

are based on simulations. The asymptotic weighted mean is liberal for a sample size of ; therefore, we present asymptotic power100,000 n p 50
of the weighted mean test only for .n p 200

test statistics and , with a LOD of 3.09, becauseT Tm mev

the ASPs with IBD values equal to 2 receive greater
weight than the ASPs with IBD values equal to 1.

The IBD distribution estimated from the completely
informative ASP sample is , , andˆ ˆf p 0.44 f p 0.442 1

, and it therefore lies in the possible trianglef̂ p 0.060

(Holmans 1993). Subsequently, the maximum LOD
score (MLS) and the triangle test statistic (TTS) have
identical LOD scores of 2.20. Nevertheless, the asymp-
totic distributions of these test statistics are different
(for details, see Holmans 1993).

When the incompletely informative families are added
to the sample, the LOD scores of both classical mean
tests decrease. In contrast, the weighted mean test shows
an increase in the LOD score to 3.20. A higher LOD
score of 2.79 can also be observed for the MLS and
TTS. The IBD distribution estimated for the complete
sample is an inner point of the possible triangle, so that
the LOD scores are identical. Nonetheless, the LOD
score of the weighted mean test statistic is higherTw

than the LOD score of the MLS and TTS.
As a second example, we consider the data of Mein

et al. (1998). On the basis of a genomewide scan that
included a total of 356 ASP families collected in the
United Kingdom, they reported a susceptibility locus on
chromosome 16q22-q24 (D16S515–D16S520) for type
1 diabetes (see fig. 1b in Mein et al. 1998). Seventeen
of the ASPs were drawn from families with three af-
fected offspring, from which a single ASP was selected
that comprised the proband and the next diagnosed

individual; thus, a sample of independent ASPs was as-
sembled. Details on subjects, genotyping, and map con-
struction can be found in the work of Mein et al. (1998).
The information content varied between 65% and 90%
for chromosome 16 (for details, see fig. 1a in Mein et
al. 1998), and it was ∼80% at the peak position.

Mein et al. (1998) used the TTS under the assumption
of dominance variance, as implemented in Genehunter
(Kruglyak and Lander 1998) for multipoint linkage
analysis. We reanalyzed the published data with use of
the TTS, the classical mean test with variance evaluated
under , the mean test with empirical variance, andH0

the weighted mean test (fig. 5). While the maximum
LOD for is 2.8, both and TTS have maximumT Tm mev

LOD scores of ∼3.4. They are outperformed by the
, which shows a LOD of 3.9 at D16S3098. It is im-Tw

portant to note that the general shapes of the LOD score
curves look similar for all displayed test statistics.

Discussion

Informativity of families for linkage analysis is an im-
portant issue in human genetics, and, consequently, it
has been studied by several investigators using different
concepts. Teng and Siegmund (1998), for example, an-
alytically compared differences between two-point and
multipoint analyses. They showed that multipoint anal-
yses exploit available information better than two-point
analyses. However, even in multipoint situations, the
IBD value cannot be determined unambiguously for ev-
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Figure 4 Asymptotic type I error of the classical mean test with empirical variance and of the weighted mean test with an increasing
number of sib pairs (n). Under , 1,000,000 samples of size n were simulated. P values were obtained by use of Student’s t distribution, withH0

df and at a nominal significance level of .�4n � 1 a p 10

Table 5

Sample Data for Comparison
of Test Statistics in Table 6

No. of
Sib Pairs f2 f1 f0

14 1 0 0
16 0 1 0
2 0 0 1
22 2/3 1/3 0
13 0 1/3 2/3
7 1/2 0 1/2

Table 6

Comparison of MLS, Holman’s TTS, and the Mean
Test Statistics for the Sample Data in Table 5

TEST STATISTICa

LOD SCORE FOR

Informative Families All Families

MLS and TTS 2.20 2.79
Tm 1.95 1.90
Tmev 2.63 2.55
Tw 3.09 3.20

a is the classical mean test statistic with varianceTm

evaluated under the null hypothesis, . is the clas-H T0 mev

sical mean test statistic with empirical variance. isTw

the weighted mean test statistic.

ery chromosomal position, since markers are not placed
at any genomic location and the number of distinct
alleles at each marker locus is restricted. Therefore,
weighting by marker informativity, as proposed here,
can still increase power to detect linkage.

Another focus in the consideration of informativity
is the family size, since families of different sizes also
have different degrees of informativity. This has been
studied by Hodge (1984) for linkage analysis with ASPs.
Hodge examined the Shannon information contained in
sibships of size s and showed that a complete sibship
contains pair-equivalents of infor-s�1(2s � 3 � 0.5 )/1.5
mation. Thus, a sibship of size 4 has the informativity
of ∼3.4 independent ASPs, although 6 different pairs

can be constructed. Hodge therefore proposed to down-
weight multiple sibships accordingly. For the more gen-
eral case of affected relative pairs, weighting on the basis
of pedigree structure has also been discussed in the con-
text of the nonparametric linkage (NPL) statistic (see,
e.g., Whittemore 1996; Kong and Cox 1997; Teng and
Siegmund 1997).

A third interpretation for informativity has been em-
ployed successfully in meta-analyses in which studies
have been weighted according to their information con-
tent (Loesgen et al. 2001; Dempfle and Loesgen 2004).
Weighting families by marker informativity has already
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Figure 5 Multipoint linkage analysis of chromosome 16 with use of the data from Mein et al. (1998). Multipoint TTS statistic was
calculated under the assumption of dominance variance. The classical mean test with variance was evaluated under , and the weighted meanH0

test with Euclidian distance weights was computed from the same individual ASP IBD estimates.

been incorporated in the analysis by Sham et al. (2002),
who specified and estimated the covariance matrix of
IBD sharing between relative pairs in the framework of
a new regression-based method for linkage analysis of
quantitative traits.

If marker informativeness is neglected in the analyses,
a severe loss of power can occur, as recently discussed
(Abecasis et al. 2004; Cordell 2004; Mukhopadhyay et
al. 2004; Schork and Greenwood 2004a, 2004b; Sie-
berts et al. 2004; Visscher and Wray 2004). A simple
solution to the problem is to remove uninformative
relative pairs from the analysis. This corresponds to a
discrete weighting scheme with all-or-nothing weights,
which is already implemented in some software pack-
ages. However, Schork and Greenwood (2004b) also
pointed out that, in practice, it will be difficult to decide
which pairs should be discarded from the analyses. They
have, therefore, also proposed to consider the use of
more complicated test statistics that downweight par-
tially informative relative pairs in some way.

In this article, we have taken up this idea and have
weighted ASP families by marker informativity: the
greater the degree of informativity of an ASP, the greater
its weight in linkage analysis. We thus extended the
classical mean test, proposed a weighted mean test, and
derived its limiting distribution. Because weights are es-

timated from current data, asymptotic normality begins
to take effect later for the novel weighted mean test
than for the classical mean test. Although significance
levels of , which correspond to a LOD score of 3,�410
can be maintained for ∼50 ASPs with the classical mean
test, between 100 and 150 ASPs are required for the
weighted mean test. However, for most applications,
this should not be a relevant restriction. In cases in
which the number of ASPs is low, our new method for
simulation of P values may be employed instead. This
keeps Euclidian distance weights fixed, and new ASPs
are generated using a continuous uniform distribution
on the corresponding circle or circle segment. Our sim-
ulation method clearly shows that the weighted mean
test is, in principle, able to detect any deviation from
the null hypothesis. This is in contrast to the TTS, for
which IBD estimates for the whole sample are restricted
to the so-called possible triangle.

Weighting as discussed here may be employed in some
other tests as well. Whittemore and Tu (1998), for ex-
ample, derived a set of constraints for the IBD proba-
bilities of affected sib triples and used common features
of the shapes of the two constraint sets to introduce the
minmax tests. For other test statistics, weighting by
marker informativity seems to be impossible. For in-
stance, in likelihood-ratio statistics like the MLS, the
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weights cancel out in both the numerator and the de-
nominator. Here, an all-or-none weighting scheme
seems to be the only possibility to exclude partially in-
formative families from the analysis. Uninformative
families are already discarded. For a sample consisting
of ASPs only, the standard NPL statistic is equivalent
to the classical mean test with theoretical variance (see,
e.g., Cordell 2004). Though weighting is meaningful for
the standard NPL statistic, different degrees of marker
informativity are adequately considered in the further
development by Kong and Cox (1997).

For validation of results, it may be worthwhile to
investigate the effect of additionally recruited discor-
dant sib pairs (DSPs), in which one offspring is affected
and the other is unaffected (Guo and Elston 2000; Els-
ton et al. 2005). Because the classical mean test has
been used for the analysis of DSPs (Risch and Zhang
1996; Guo and Elston 2000), the weighted mean test
is adopted easily for this situation—instead of a higher
sharing under linkage, it should be !1/2 for DSPs. The
weighted mean test for ASPs and DSPs will soon be
available in the software package S.A.G.E., which can
be obtained for free by nonprofit organizations.

In two applications, we have illustrated the use of the
weighted mean test in two-point and multipoint anal-
yses. However, our new approach is currently restricted
to independent ASPs. Two approaches to overcome this
restriction are possible. First, large sibships can be
treated as independent ASPs, as shown by Blackwelder
and Elston (1985). This result is based on asymptotic
arguments with identical weights; thus, P values are
possibly too liberal in small samples. In addition, the
generalization of the argument used by Blackwelder and
Elston (1985) for the classical mean test to the weighted
mean test needs to be demonstrated in a Monte Carlo
simulation study. Second, the same GEE technique that
has been used for deriving the asymptotic normality of
the proposed weighted mean test may be employed here,
with a correction for large sibships. Similarly, our ap-
proach for simulation of P values requires extension to
large sibships.

Another area of possible improvement is our use of
Euclidian distance weights for the novel weighted mean
test. We validated the asymptotic distribution of the
proposed test statistic with Euclidian distance weights
in a Monte Carlo simulation study and demonstrated
that the power of the weighted mean test can be sub-
stantially higher than the power of the classical mean
test. However, our simulations were based on simple
Mendelian traits—that is, fully penetrant without phe-
nocopies. Furthermore, we did not study the effect of
missing parental genotypes and of misspecified allele
frequencies. Use of the diabetes data in our example
yielded results consistent with findings from our simple
simulation studies. However, we recognize that diabetes

is a more complex genetic disease, and we therefore
presume that our weighted mean test is also powerful
in more complex models.

Since we did not show the optimality of the proposed
weights, other weighting schemes based on different dis-
tance or informativity measures, such as Shannon’s en-
tropy or the Fisher information, may be even more pow-
erful. We cannot exclude the notion that the classical
mean test with empirical variance might be more pow-
erful in some configurations. Although the numerical
derivation of optimal weights is possible in principle, a
theoretical result most likely cannot be derived, since
weights appear in both the numerator and the denom-
inator of the weighted mean test statistic. Further re-
search is required to extend the weighted mean test to
large sibships, or even to affected relative pairs.
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